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We compare the accuracy of two cluster extensions of dynamical mean-field theory in describing d-wave
superconductors, using as a reference model a saddle-point t-J model which can be solved exactly in the
thermodynamic limit and at the same time reasonably describes the properties of high-temperature supercon-
ductors. The two methods are cellular dynamical mean-field theory, which is based on a real-space perspective,
and dynamical cluster approximation, which enforces a momentum-space picture by imposing periodic bound-
ary conditions on the cluster, as opposed to the open boundary conditions of the first method. We consider the
scaling of the methods for large cluster size, but we also focus on the behavior for small clusters, such as those
accessible by means of present techniques, with particular emphasis on the geometrical structure, which is
definitely a relevant issue in small clusters.
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I. INTRODUCTION

Strongly correlated electronic materials and the solution
of the models introduced to understand their behavior are
one of the main challenges of modern solid-state physics.
Despite the intensive activity triggered by the role of corre-
lations in high-temperature superconductors, many questions
remain unanswered. The vitality of the field is testified by the
development of theoretical approaches designed precisely for
these systems. Among these methods, a central role is played
by dynamical mean-field theory �DMFT�,1 a nonperturbative
approach which generalizes the classical mean-field theory to
the quantum dynamical world. The development of DMFT
has allowed for a number of successes, starting from the first
unified scenario for the longstanding problem of the Mott
transition, and including reliable description of the electronic
properties of many correlated systems.2

The idea behind DMFT is analogous to classical mean-
field theory, namely, the assumption that each lattice site is
equivalent to any other. The difference with the static case is
that, within DMFT, each lattice site has a completely non-
trivial dynamics. Following the above strategy, one given site
can be taken as representative of the whole system: the lat-
tice problem is therefore mapped onto a dynamical local
problem, and consequently onto a single-impurity model.
The effect of all the remaining lattice sites will be described
by a bath, whose frequency dependence will be determined
through a self-consistency condition that enforces the
equivalence between the lattice and the local problems.1,3

The main limitation of the standard �single-site� DMFT, as
we have described it so far, is the neglect of spatial correla-
tions. This constraint, indeed, introduces some limitations
which are particularly relevant in low dimensionality, and in
particular it makes it impossible to treat phases with a defi-
nite spatial ordering such as d-wave superconductivity,
d-density waves, stripes, dimerized states.

A few schemes have been proposed to overcome these
limitations, reintroducing short-range correlations by replac-
ing the single-impurity model with a cluster-impurity, which
contains Nc sites in a given spatial arrangement.4–6 In this

paper we compare two alternative schemes that represent
somehow opposite perspectives in their ability to describe
two-dimensional correlated models and d-wave supercon-
ductivity. The dynamical cluster approximation �DCA� �Ref.
4� is based on a momentum-space perspective and it replaces
the single momentum-independent self-energy of DMFT
with the set of self-energies associated to the lattice momenta
of an Nc-site cluster. For the �cluster� impurity model, this
approach requires periodic boundary conditions on the clus-
ter. The other approach we consider, the cellular dynamical
mean-field theory �CDMFT�, assumes instead a real-space
perspective, and it generalizes more directly the mean-field
spirit of DMFT.5 In this scheme, a given cluster is chosen,
and a “local” theory for the cluster degrees of freedom is
obtained through the cavity method, replacing the effect of
the rest of the lattice with a self-consistent effective bath.
The basic approximation is to assume that the dynamical
field experienced by the cluster is Gaussian.

The properties of the two methods have been compared in
several papers7 which focused mainly on the asymptotic be-
havior for large clusters, and the two methods have been
used to study many properties of the two-dimensional Hub-
bard model like, notably, d-wave superconductivity.8 It must
be underlined that, despite the simplifications introduced by
the cluster methods with respect to the full lattice problem,
the cluster-impurity model remains a nontrivial many-body
problem, that still requires, in practice, a numerical “solver”
in order to achieve the Green’s functions. Among the most
popular impurity solvers we remind various quantum Monte
Carlo methods �Hirsch-Fye determinantal method9 and the
more recently introduced continuous-time quantum Monte
Carlo10�, the exact-diagonalization approach,11 and the nu-
merical renormalization group.12

As a matter of fact, present “state of the art” calculations
using accurate numerical solvers are limited to fairly small
clusters,8,13 or, if the cluster size is increased, to relatively
small coupling and/or finite temperature,14,15 which may not
be representative of the strong-repulsion regime. Such small
sizes hardly allow for an accurate size scaling to describe the
thermodynamic limit. It is therefore desirable to study the
performance of the different cluster methods as a function of
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the cluster size within some approach that allows for a solu-
tion at arbitrary values of the size. This point of view has
been taken in Ref. 7, where a one-dimensional exactly solv-
able model has been studied using both CDMFT and DCA,
allowing the comparison between the two methods.

In this work we apply a similar strategy to treat a model
which describes the essential physical ingredients of the cu-
prates, namely, their two-dimensional character, the effects
of strong correlations, and, most importantly, the presence of
d-wave superconductivity. This model is the t-J model
treated at a saddle-point level, following, e.g., Ref. 16. While
this model is clearly an approximation of the full two-
dimensional t-J model �which lacks an exact solution�, we
will consider it as our “starting model.” In this way we will
have an exactly solvable model, containing all the main in-
gredients of cuprates, that we can also solve using DCA and
CDMFT approaches for any finite size of the clusters. This
will allow us, on one hand, to study the convergence of the
methods in the limit of large cluster size, but on the other
hand it will lead to a benchmark of the methods for small
and intermediate clusters, such as those available in present
numerical calculation and in those that can be expected in a
few years. Of particular interest, in this light, are the “geo-
metrical” aspects of the different approaches. When a phase
with a given spatial structure is present in a finite cluster, we
can expect different behaviors according to the way in which
the ordered phase fits in the chosen cluster. This will also
depend on the boundary conditions and will mark the differ-
ence between DCA and CDMFT.

The paper is organized as follows. In Sec. II A we present
the reference model, i.e., the saddle-point t-J model. In Secs.
II B–II D we present DCA and CDMFT and their application
to our model. Section III presents our results and Sec. IV
contains concluding remarks.

II. MODEL AND METHOD

A. Saddle-point t-J model

In this section we briefly review the derivation of the
saddle-point t-J model in order to fix the notations and the
main concepts. Even if we will not attempt to solve it beyond
saddle point, the starting point of our analysis is the two-
dimensional t-J model

H = P�− t�
�i,j�

�f i�
† f j� + H.c.� − �0 � f i�

† f i�

+ J�
�i,j�

�Si · S j −
1

4
ninj�	P , �1�

where Si=
1
2 f i�

† ���f i� is the local spin operator, ni=��f i�
† f i�

is the local electron density, and P=
i�1−ni↑ni↓� is a projec-
tion operator which restricts the fermionic Hilbert space to
the low-energy subspace of empty and singly-occupied sites;
the superexchange antiferromagnetic coupling J is given by
4t2 /U.

We introduce slave boson fields bi in order to keep track
of the empty sites �holes�: this representation allows, in fact,
to replace the constraint of zero double occupancy with the
following equality constraint:

�
�

f i�
† f i� + bi

†bi = 1, �2�

where bi
†bi acquires the meaning of a local density of holes.

Enforcing this constraint by means of a local Lagrange mul-
tiplier �i, we obtain

Hsb = − t�
�i,j�

�f i�
† f j�bj

†bi + H.c.� − �0 � f i�
† f i�

+ J�
�i,j�

�Si · S j −
1

4
�1 − bi

†bi��1 − bj
†bj�	

+ � �i��
�

f i�
† f i� + bi

†bi − 1� . �3�

To obtain an exactly solvable model we decouple the ex-
change interaction Si ·S j introducing three sets of Hubbard-
Stratonovich fields, which allow us to treat on the same foot-
ing both the particle-hole and particle-particle channels: the
reason for this approach is given by the requirement that the
SU�2� particle-hole symmetry at half-filling is being pre-
served.

A static mean-field approximation is then achieved by re-
placing the auxiliary fields and the Lagrange multiplier with
their saddle-point values. Setting �Si�=0 and neglecting the
four-boson hole-hole interaction, which is O�x2� near half-
filling �x= �bi

†bi� is the hole doping�, the slave-boson mean-
field Hamiltonian reads

Hsb
MF = − t�

�i,j�
�f i�

† f j�bj
†bi + H.c.� − � f � f i�

† f i� − �b � bi
†bi

− �
�i,j�

��ij f i�
† f j� + H.c.� + �

�i,j�
��ij�f i↑

† f j↓
† − f i↓

† f j↑
† � + H.c.� ,

�4�

with the particle-hole and particle-particle amplitudes given
by

�ij =
3

8
J�f j�

† f i�� , �5�

�ij =
3

8
J�f i↑f j↓ − f i↓f j↑� . �6�

The last step of our approximation consists in decoupling
the kinetic term of Eq. �4�, and this leads to an effective
hopping amplitude teff= t�bj

†bi� for the fermionic degrees of
freedom: assuming full boson condensation at T=0, we can
set �bj

†bi�= �bi�2=x and consider, at last, teff=xt. At small
doping the effects of strong correlations are thus summarized
in the renormalization of the free-fermion hopping term,
which leads to a strong suppression of the kinetic energy,
O�xt�, and to a relative enhancement of the super-exchange
energy, O�J�, i.e., finite, as x→0.

In finding a self-consistent solution of Hamiltonian �4�, it
has been shown17 that while at half-filling there are an infi-
nite number of degenerate ground states, connected together
by the SU�2� rotations of the particle-hole symmetry, as soon
as doping breaks the SU�2� invariance the lowest-energy
state is found to be16 the d-wave solution �x̂=�ŷ =�,
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�x̂=−�ŷ =�. We will therefore consider this kind of solution
throughout our analysis.

Writing the fermionic part of Hsb
MF in Fourier space, we

obtain

Hf = �
k

�	k − ��fk�
† fk� + �k�fk↑

† f−k↓
† + f−k↓fk↑� , �7�

	k = − 2�teff + ���cos kx + cos ky� , �8�

�k = 2��cos kx − cos ky� , �9�

where the parameters � and �, representing respectively a
renormalization of the hopping and a d-wave order param-
eter, are determined by the self-consistency Eqs. �5� and �6�.
These in Fourier space read

� =
3

8
J� d2k

�2
�2 �fk
† fk��cos kx + cos ky�

=
3

8
J� d2k

�2
�2

�� − 	k�
2Ek

tanh
�Ek

2
�cos kx + cos ky� , �10�

� =
3

8
J� d2k

�2
�2 �fk↑f−k↓��cos kx − cos ky�

=
3

8
J� d2k

�2
�2

�k

2Ek
tanh

�Ek

2
�cos kx − cos ky� , �11�

where Ek=��	k−��2+�k
2 are the eigenvalues of Hamiltonian

�7�. The fermionic chemical potential � is instead deter-
mined by the number equation

1 − x = 1 −� d2k

�2
�2

�	k − ��
Ek

tanh
�Ek

2
, �12�

obtained by imposing the fermion density to be �1−x�.

B. Cluster approximations

We are now in the position to compare the exact solution
of the saddle-point model �4� with the approximate cluster
solutions. Within cluster DMFT methods an effective action
for the cluster degrees of freedom is defined as

Seff = �
−�

�

d��
���

c��
† ���G−1�� − �����c������

+ �
−�

�

d��
�=1

Nc

Un�↑���n�↓��� , �13�

where G−1 is a dynamical “Weiss” field. By computing the
cluster Green’s function G������=−�Tc�����c��

† �, the cluster
self-energy is obtained as

c
���i�n� = G��

−1�i�n� − G��
−1�i�n� . �14�

The two methods differ in the way the Weiss field is obtained
through the knowledge of the cluster self-energy c

���i�n�.
Within CDMFT the “local” Green’s function for the clus-

ter is calculated as

Gloc
−1�i�n� = �


/Nc


/Nc 1

i�n + � − tk − c�i�n�
dk

2
/Nc
, �15�

where the momentum integral extends over the reduced Bril-
louin zone associated to the Nc-site cluster; tk is the Fourier
transform of the cluster hopping term. Gloc�i�n��� is then
used to obtain a new Weiss field

�G0
new���

−1�i�n� = c
���i�n� + Gloc

−1���i�n� , �16�

which determines the effective action �13� from which
G���i�n� can be obtained: the procedure is then iterated until
convergence. We stress that this method does not impose
lattice translational invariance.

The spirit of DCA is instead to generalize the momentum
independence of the self-energy, characteristic of the single-
site DMFT, to a small cluster. Thus one defines a coarse-
grained self-energy for every reciprocal lattice momentum kc
associated to the cluster at hand. The analog of Eq. �15�,
which expresses the lattice Green’s function in terms of the
cluster self-energy, is given by

G�kc + K,i�n� =
1

i�n + � − t�kc + K� − c�kc,i�n�
,

�17�

while the self-consistency relation between the Weiss field
and the cluster self-energy now reads

G0
−1�kc,i�n� = �Nc

N
�
K

G�kc + K,i�n�	−1

+ c�kc,i�n� .

�18�

In these expressions, all the cluster quantities appear as func-
tions of the cluster momenta kc, and the K integration over
the reduced Brillouin zone is nothing but a coarse graining of
the lattice Green’s function around these momenta.

A crucial observation is that the diagonal nature in mo-
mentum space of the DCA equations requires that the cluster
part of our effective action has periodic boundary conditions.
As we will discuss, this may represent a severe constraint,
especially for small cluster sizes.

Even if DCA is naturally defined in momentum space, it
is useful to recover a real-space formulation also for this
cluster approach, in order to have a unified formalism which
makes easier the comparison between the two methods. Per-
forming a Fourier transform upon the cluster momenta, all
the cluster quantities Q�kc� become cyclic matrices in the
real-space cluster indexes, i.e., with the matrix elements Qij
depending only on �i− j�mod Lc: this means that translational
invariance is preserved within the cluster, which thus must
have periodic boundary conditions, as we mentioned before.
The real-space formulation of the self-consistency Eq. �18� is
then given by
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Ĝ0
−1�i�n� = ̂c�i�n�

+ �Nc

N
�
K

��i�n + ��1̂ − t̂DCA�K� − ̂c�i�n��−1�−1

,

�19�

where �t̂DCA�K��ij =
1

Nc
�kc

eikc·�ei−ej�t�kc+K�=e−iK·�ei−ej�tij�K�
differs from the bare t̂�K� used in CDMFT in order to satisfy
the cyclicity condition, i.e., the translational invariance. As in
CDMFT, the solution requires an iterative solution of a
cluster-impurity model determined self-consistently. We now
detail the implementation of the two approaches for the
mean-field two-dimensional t-J model.

C. DCA for the saddle-point t-J model

In our analysis of the t-J model, the DCA cluster self-
energy �kc� consists of a normal term ��kc� and of an
anomalous term ��kc�, which are respectively the Fourier
transform of �ij and �ij within the DCA cluster; explicitly,
they are given by

��kc� = − 2�cl
DCA�cos kcx + cos kcy� , �20�

��kc� = 2�cl
DCA�cos kcx − cos kcy� . �21�

Since our starting model is a mean-field model, these quan-
tities are � independent; however, this deficiency is compen-
sated by the possibility to solve exactly both the lattice and
the cluster problems, even for large values of Nc.

The cluster parameters �cl
DCA and �cl

DCA are determined by
the DCA self-consistency equations

�cl
DCA =

3

8
J� d2k

�2
�2 �fk
† fk��cos kcx + cos kcy�

=
3

8
J�

kc

� d2K

�2
�2

�� − 	K,kc
�

2EK,kc

�tanh
�EK,kc

2
�cos kcx + cos kcy� , �22�

�cl
DCA =

3

8
J� d2k

�2
�2 �fk↑f−k↓��cos kcx − cos kcy�

=
3

8
J�

kc

� d2K

�2
�2

�kc

2EK,kc

�tanh
�EK,kc

2
�cos kcx − cos kcy� , �23�

where 	K,kc
=−2teff�cos�kcx+Kx�+cos�kcy +Ky��+��kc� and

EK,kc
=��	K,kc

−��2+�kc

2 . In the second row of Eqs. �22� and
�23� the integration over the entire Brillouin zone is divided
into a sum over the cluster momenta and an integration over
the reduced Brillouin zone, � d2k

�2
�2 � 1
Lc

2 �kc
� d2K

�2

Lc

�2
.

It is important to note that these cluster quantities, used in
the definition of the cluster self-energy, do not have an im-

mediate physical meaning and thus they cannot be directly
compared to the corresponding lattice quantities of Eqs. �10�
and �11�. The physically relevant quantities are instead given
by

�latt
DCA =

3

8
J� d2k

�2
�2 �fk
† fk��cos kx + cos ky� , �24�

�latt
DCA =

3

8
J� d2k

�2
�2 �fk↑f−k↓��cos kx − cos ky� , �25�

where the expectation values must be evaluated using the
self-consistent parameters �cl

DCA and �cl
DCA, as in Eqs. �22�

and �23�.
Finally, the DCA analog of Eq. �12� gives the self-

consistency equation for the chemical potential:

1 − x = 2� d2k

�2
�2 �fk
† fk�

= 1 − �
kc

� d2K

�2
�2

�	K,kc
− ��

EK,kc

tanh
�EK,kc

2
. �26�

D. CDMFT for the saddle-point t-J model

Considering a square cluster C with Nc=Lc�Lc sites, we
denote by i� i�ix , iy�= ix+ �iy −1�Lc the cluster site with coor-
dinates �ix , iy�, where ix , iy =1, . . . ,Lc. The local cluster
Hamiltonian is then obtained from the lattice one by restrict-
ing all the site-index sums to the cluster sites:

Hc = �
i,j�C

�tij + �ij
c �f i�

† f j� − ��
i�C

f i�
† f i� + �

i,j�C
��ij

c f i↑
† f j↓

† + H.c.� ,

�27�

where �̂c and t̂ are Hermitian matrices and �̂c is a symmetric
matrix. Explicitly, their expressions read

tij = − teff�
�̂

�� j,i+�̂ + � j,i−�̂� , �28�

�ij
c = − �

�̂

��i,�̂� j,i+�̂ + � j,�̂
� � j,i−�̂� , �29�

�ij
c = �

�̂

��i,�̂� j,i+�̂ + � j,�̂� j,i−�̂� , �30�

where �̂= x̂ , ŷ is a lattice displacement in the x or y direction,
� j,i+x̂=� j,i+1�1−�n�i,nLc

�, � j,i−x̂=� j,i−1�1−�n�i,nLc+1�, and
� j,i�ŷ =� j,i�Lc

. The self-consistent parameters �i,�̂ and �i,�̂

are formally given by Eqs. �5� and �6�, where the expectation

values must be evaluated using the cluster propagator D̂c,
defined below.

In order to write this propagator in a compact form, we
shall use the Nambu spinor �†��f1↑

† , . . . , fLc
2↑

† , f1↓ , . . . , fLc
2↓�,

which contains all the 2Lc
2 fermionic degrees of freedom

within the cluster. With this notation,
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D̂c��� = − �T�����†�0�� = �Ĝ↑��� F̂†�− ��

F̂��� − Ĝ↓
T�− ��

� , �31�

where Gij,�=−�Tfi����f j�
† �0�� and Fij =−�Tfi↓

† ���f j↑
† �0�� are,

respectively, the normal and anomalous Green’s functions.

We can then express D̂c in terms of the cluster Hamiltonian
parameters,

D̂c�i�n� =� d2K

�2


Lc
�2 �i�n1̂ − ĥ�K��−1, �32�

ĥ�K� = � t̂�K� + �̂c − �̂ �̂c

��̂c�� − �t̂�− K� + �̂c − �̂��
� , �33�

where �̂ is the chemical potential times the unitary matrix,
t̂�K� is the Fourier transform of the superlattice hopping ma-
trix t̂R,R�, which, for R−R�=Lc, connects the boundary
sites of neighboring clusters:

t�K�ij = tij − teff�
n=1

Lc

�exp�iKxLc��i,nLc
� j,�n−1�Lc+1

+ exp�− iKxLc�� j,nLc
�i,�n−1�Lc+1

+ exp�iKyLc�� j,n�i,Lc�Lc−1�+n

+ exp�− iKyLc��i,n� j,Lc�Lc−1�+n� . �34�

Introducing the unitary matrix Û�K� which diagonalizes

ĥ�K�,

�Û�K�ĥ�K�Û†�K���� = ��,����K� , �35�

we can write the cluster propagator as �the dependence of the
matrices on K is omitted to lighten the notation�

�D̂c�i�n��IJ =� d2K

�2


Lc
�2 �

�=1

2Lc
2

Û�I
� Û�J

1

i�n − �� , �36�

where the index I��� , i� denotes the ��−1�Lc
2+ i component

of a Nambu spinor ��=1,2�.
It is now easy to get the self-consistency relations for the

cluster parameters:

�i,x̂ =
3

8
J� d2K

�2


Lc
�2 �

�=1

2Lc
2

�Û�,�1,i�
� Û�,�1,i+1�

− Û�,�2,i+1�
� Û�,�2,i��f�����, i � nLc, �37�

�i,ŷ =
3

8
J� d2K

�2


Lc
�2 �

�=1

2Lc
2

�Û�,�1,i�
� Û�,�1,i+Lc�

− Û�,�2,i+Lc�
� Û�,�2,i��f�����, i � Lc�Lc − 1� , �38�

�i,x̂ = −
3

8
J� d2K

�2


Lc
�2 �

�=1

2Lc
2

�Û�,�1,i�
� Û�,�2,i+1�

+ Û�,�1,i+1�
� Û�,�2,i��f�����, i � nLc, �39�

�i,ŷ = −
3

8
J� d2K

�2


Lc
�2 �

�=1

2Lc
2

�Û�,�1,i�
� Û�,�2,i+Lc�

+ Û�,�1,i+Lc�
� Û�,�2,i��f�����, i � Lc�Lc − 1� , �40�

where f�x�= �ex+1�−1 is the Fermi function.
The determination of the chemical potential � as a func-

tion of the fermion density requires some more care. In fact,
as we have seen in Eqs. �37�–�40� for � and �, the observ-
ables are generally site dependent in CDMFT, and there is no
unique procedure to extract lattice observables �translation-
ally invariant� from cluster quantities. In general, for a local
observable Oi, we can estimate its lattice counterpart with a
weighted average

Olatt = �
i�C

wiOi, �41�

where �i�Cwi=1, and we have decided to investigate the two
extreme cases of flat average, wi

flat=1 /Nc, and bulk value,
wi

bulk=�i,b, the latter case corresponding to taking the value
of the observable just in the center of the cluster,18 repre-
sented by the site b. From the local fermion density

�ni� = 1 +� d2K

�2


Lc
�2 �

�=1

2Lc
2

�Û�,�1,i�2 − Û�,�2,i�2�f����� ,

�42�

we can therefore extract an average density nflat

=1 /Lc
2�i�ni� and a bulk density nbulk= �nb�, and we can adjust

the chemical potential in order to satisfy either one of the
two equations

n�flat,bulk� = 1 − x . �43�

The same argument would apply in extracting the lattice
self-energy parameters, to be compared with those of Eqs.
�10� and �11�, from the corresponding cluster quantities.
However, in considering the flat average case, we should
note that �ij and �ij are defined on bonds, so that for each
direction their total number is Lc�Lc−1� instead of Lc

2; the
averages will thus be given by

�x̂
flat =

1

Lc�Lc − 1� �
i�nLc

�i,x̂, �44�

�ŷ
flat =

1

Lc�Lc − 1� �
i�Lc�Lc−1�

�i,ŷ , �45�
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�x̂
flat =

1

Lc�Lc − 1� �
i�nLc

�i,x̂, �46�

�ŷ
flat =

1

Lc�Lc − 1� �
i�Lc�Lc−1�

�i,ŷ . �47�

The bulk value estimate is instead straightforward and corre-
sponds to the values of the parameters on the innermost
bonds of the cluster.

III. RESULTS

A. Size dependence of observables

We start our analysis of DCA and CDMFT for the saddle-
point t-J model by considering the behavior of three relevant
observables as a function of the linear size of the cluster for
square lattices of Lc�Lc sites. Throughout this section, en-
ergy scales are expressed in units of J /4 and J / t=0.4. In Fig.
1 we plot the superconducting order parameter for different
values of doping x=0, 0.1, and 0.2. As discussed above, for
CDMFT one has the alternative between “bulk” and “aver-
age” estimates. With respect to �, we have found that the
average estimate is much less sensitive to the size of the
system than the bulk one, the latter being instead rather un-
reliable, compared to the exact solution, up to large values of
Lc. We will thus present, in each panel, only average esti-
mates of �, while considering both the average and the bulk
estimates of the electron density. The behavior of � as a
function of the cluster size is completely nontrivial and re-
veals important differences between the two methods. While
DCA converges smoothly and faster from Lc=5, it presents
strong size effects for smaller clusters: the Lc=2 cluster over-
estimates � at large doping, while Lc=3 and 4 produce a
strongly underestimated value of �. This shows that
momentum-space discretization is too strong to properly de-

scribe the spatial structure of the order parameter as long as
the number of allowed momenta is small. On the other hand,
while for Lc=2 CDMFT overestimates � as well, the results
obtained for small clusters are in general more reliable, with
relatively small deviations from the exact solution and, most
important, a smoother dependence on Lc. However, this
method converges more slowly to the thermodynamic limit,
in particular for larger dopings, where � is systematically
underestimated. The comparison between different doping
values shows indeed that CDMFT is quite inaccurate for x
=0.2, a doping value at which the hopping processes become
more relevant, according to teff=xt, making the system itin-
erant and consequently better described in momentum space
than in real space. The bulk estimate of the density is typi-
cally found to provide a better agreement with the exact so-
lution.

The same tendencies are present in the critical tempera-
ture �not shown�, with a significantly enhanced overestimate
of Tc compared to � in the Lc=2 DCA cluster �we obtain
Tc=1.53, 1.46 and 1.30 for x=0,0.1,0.2, while the exact
results are 0.767, 0.601 and 0.374�. The systematic underes-
timate of Tc for large doping in CDMFT is also reflected in a
smaller critical doping at which superconductivity disappears
�xc�0.25 even for large clusters, as opposed to the thermo-
dynamic limit xc�0.35�.

We finally consider the normal parameter �. Since this
parameter coincides with � at half-filling, due to the particle-
hole symmetry, we focus only on x=0.1 and 0.2 �Fig. 2�.
Here, in agreement with previous studies in a one-
dimensional model,7 we find that in CDMFT the bulk esti-
mate of the parameter is more accurate than the average one.
Yet, CDMFT is less accurate than DCA for the cluster we
studied, signaling that the exponential convergence of bulk
estimates is established only for larger values of Lc.

The different behavior between the superconducting and
the normal parameters underlines that the accuracy of the
different approaches, for small clusters, depends crucially on
the quantity under consideration. In particular, the d-wave
superconducting order parameter suffers stronger size effects
due to its peculiar structure in real space, and, when the
number of cluster sites becomes small, it is better represented
by the CDMFT solution. On the other hand, the normal pa-
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FIG. 1. �Color online� Superconducting parameter � as a func-
tion of the linear dimension Lc for square clusters and different
cluster methods. Full red dots are CDMFT with bulk density, light
green dots CDMFT with average density, and blue squares DCA.
The thermodynamic limit is marked by the thick green line. From
top to bottom x=0,0.1,0.2.
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FIG. 2. �Color online� Normal parameter � as a function of the
linear dimension Lc for square clusters and different cluster meth-
ods. Full red dots are CDMFT bulk values of �, light green dots
CDMFT average values, and blue squares DCA. The thermody-
namic limit is marked by the thick green line. From top to bottom
x=0.1,0.2.
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rameter, which is more isotropic, is better described by DCA,
which favors homogeneous states �in the sense of states
without peculiar patterns�.

B. Doping dependence for small clusters

In this section we focus on the smallest clusters Lc
=2,3 ,4 ,5, where we analyze in more detail the doping de-
pendence of the observables. This study is of particular in-
terest because only small sizes can be handled in a full nu-
merical solution of the Hubbard or t-J models using CDMFT
and DCA approaches. For the sake of definiteness, in CD-
MFT we use the flat average estimate for both � and � and
the bulk estimate for the electron density.

We start with the Lc=2 system, namely, the so-called 2
�2 plaquette. This is the smallest cluster that can host
d-wave superconductivity, and its limited size makes it defi-
nitely the most popular system in CDMFT and DCA.8,13

From the results shown in Fig. 3 we find that both methods
overestimate the d-wave order parameter, with stronger de-
viations at small x for CDMFT and for larger x in DCA. As
far as the critical temperature is concerned, however, CD-
MFT turns out to reliably estimate the thermodynamical limit
over almost the entire doping range, while DCA leads to a
huge overestimate of Tc �a factor of 2 at half-filling, which
increases as the doping grows�. These results suggest that the

geometrical constraints imposed by the 2�2 cluster have
extremely strong effects on the d-wave phase, making this
kind of cluster hardly useful for a quantitative estimate.
Nonetheless, the simplicity of this cluster makes it a simple
instrument to analyze the essential physics of two-
dimensional correlated models.

As soon as we increase the size of the cluster to Lc=3,
CDFMT experiences a substantial improvement �Fig. 4�.
Both � and Tc are indeed reasonably close to the exact so-
lution, except for a moderate bifurcation of Tc for large dop-
ing. Conversely, DCA strongly underestimates both quanti-
ties. It should be noted that odd values of Lc explicitly break
the particle-hole symmetry which holds at half-filling in the
original model, since the �
 ,
� point of the Brillouin zone is
not included among the cluster momenta: this is the reason
why � and � are not equal for x=0. The success of CDMFT
for this small cluster has a twofold interest: on one hand it is
a possible promising direction for full numerical solutions of
the Hubbard model, since the size of this cluster is reason-
ably small to allow for a reasonably accurate numerical ac-
curacy; on the other hand it suggests us that, from a geo-
metrical point of view, it is important to have at least two
independent local amplitudes for the � field �the symmetry
group of square clusters allows two independent bonds for
Lc=3, in CDMFT, while in the corresponding DCA cluster
there is only one independent ��kc��.

For the Lc=4 cluster the two approaches give essentially
analogous results, and none of them is particularly interest-
ing �Fig. 5�. This underlines the fact that, for such small
values, the precise shape of the cluster matters more than the
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total number of sites, and that the inclusion of the �
 ,
�
point improves the DCA results, even if not by a large
amount.

Interestingly, at Lc=5 DCA becomes substantially more
accurate than CDMFT, in spite of the odd number of cluster
sites: the coarse graining of the Brillouin zone is here suffi-
ciently fine to overcome the lack of relevant symmetry points
such as �
 ,
�, �
 ,0�, and �0,
� �Fig. 6�. This confirms that
DCA enters the asymptotic regime more rapidly than CD-
MFT, for which the finite-size effects survive to larger clus-
ters, as we anticipated in the previous section.

C. Tilted clusters

As we mentioned above, when dealing with very small
clusters the DCA solution may suffer of severe size effects,
associated to the presence or absence of characteristic cluster
momenta, of special relevance, such as �
 ,
�, �
 ,0�, and
�0,
�. A potential solution for this kind of sensitivity to the
specific size and shape of the cluster is the use of specific
“tilted” lattices, as shown in Refs. 15 and 19. These clusters
are compatible with the space group of the lattice, and at the
same time are expected to display less important size effects
than the standard square systems. Our analysis shows that,
unfortunately, the improvement brought by the tilted lattices
is not substantial. In Fig. 7 we display DCA results for Nc
=8,12,16 sites in tilted clusters of Betts’ “A” type �see Fig.
1 in Ref. 15�, and we found that an accuracy comparable to
that of the 5�5 square cluster is obtained only for Nc
=20 A, i.e., with almost the same number of sites.

D. More specific lattices

One of the outcomes of our analysis so far is that, as long
as the size of the cluster is not sufficiently large, the accuracy
of the results is dominated by geometrical factors. Therefore
it is interesting to consider small specific clusters, whose size
can be accessible to full numerical solutions, and that can
minimize the geometrical frustration �or enhancement� of the
d-wave superconducting state.

To this aim we studied the “cross” cluster, shown in Fig. 8
together with its embedding in the two-dimensional space,
and small rectangular lattices. The star geometry can be con-
sidered as a good choice, since it can fit a d-wave “cross” of
nearest-neighbor bonds. We find that the two approaches per-
form quite differently for this lattice. While CDMFT does
not provide particularly accurate results, DCA reproduces re-
markably well the exact solution for both the order parameter
� and the critical temperature Tc �Fig. 9�. Interestingly, the
accuracy in the superconducting parameters is not accompa-
nied by an equally good description of the normal self-
energy � �results are not shown�. The accuracy of DCA is
associated to the particular values of the cluster momenta
Kc= �0,0�, ��2
 /5,4
 /5�, and ��4
 /5,−2
 /5�, which ex-
clude the special symmetry points �0,
� and �
 ,0�, but are
at the same time close enough to the antinodal points to
properly treat the superconducting order parameter. On the
other hand, the momenta which are most important to de-
scribe � are not included, leading to a worse estimate.

As far as CDMFT is concerned, much closer agreement
with the thermodynamic limit is reached, as shown in Fig.
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FIG. 5. �Color online� Same as Fig. 3 for 4�4 cluster.
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10, using �small� rectangular lattices. Already the 2�3 rect-
angle provides quite accurate results over the entire range of
dopings, and the 3�4 one shows a remarkable agreement
with the thermodynamic limit. An explanation for the suc-
cess of such clusters could be found in the relatively large
number of independent bonds compared to their total num-
ber, which is a consequence of the lower symmetry of the
cluster space group. DCA on these rectangular lattices does
not lead to particularly accurate results. Essentially the re-
sults �not shown� can be seen as a slight improvement on the
corresponding square lattice �the largest square lattice con-
tained in the rectangle�, as far as Tc is concerned.

We have thus identified at least two relatively small lat-
tices which provide accurate results and that can be reason-
ably approached using a full numerical solution of CDMFT

or DCA for the quantum Hubbard or t-J models, namely the
five-site cross for DCA and the six-site rectangle for CD-
MFT. If we assume that dynamical effects will not spoil the
geometrical effects that we have identified, these clusters
could be an ideal compromise between accuracy and compu-
tational effort.

IV. CONCLUSIONS

In this paper we have investigated the accuracy of two
cluster extensions of DMFT which are based on diametri-
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FIG. 8. �Color online� Cross cluster and its embedding in the
2-d lattice.
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cally opposite perspectives: DCA, which enforces a
momentum-space point of view, and CDMFT, which is for-
mulated in real space. Even if the two methods are similar in
spirit, they turn out to have different strengths and weak-
nesses. In this paper we analyzed the behavior of the two
methods for a number of different clusters, using as a refer-
ence model an exactly solvable one which presents d-wave
superconductivity as well as strong-correlation effects lead-
ing to the half-filling Mott physics. The model under consid-
eration is the two-dimensional t-J model treated within the

mean-field slave-boson method. Even if this model is more
naturally seen as an approximation of the real t-J model, here
it is used to benchmark the cluster methods against an exact
solution containing the essential physics of the cuprates.

The choice of the model does not allow us to discuss the
frequency dependencies of the observables. Therefore our
strategy is to focus on the geometrical effects introduced by
the finite size of the clusters �and eventually by their shape�
within the different methods.

Analyzing the results as a function of the cluster size for
square lattices of linear size Lc, we found that the smallest
cluster �Lc=2� provides rather inaccurate results, at least
quantitatively. This suggests that full CDMFT and DCA stud-
ies of two-dimensional models could be poorly representa-
tive of the thermodynamic limit. The evolution increasing
the cluster size is quite irregular, but it shows some important
properties: CDMFT is found to adapt rather well to some
precise shapes, while DCA shows larger geometrical effects,
even though it converges faster to the thermodynamic limit
�the latter is essentially reached for lattices of the order of
5�5 sites�. The limitations of DCA for small clusters are not
dramatically reduced by using “tilted” lattices, which include
the most relevant momenta.

On the other hand, it is found that specific small lattices
can provide very accurate results. In particular rectangular
lattices provide rather accurate results within the CDMFT
approach, even for the smallest case of a 2�3 rectangle. As
far as DCA is concerned, we find that a five-site “cross”
cluster gives extremely accurate results for both the super-
conducting order parameter and the critical temperature,
even if the description of the normal self-energy is not
equally accurate. These two clusters �six-site rectangle in
CDMFT and five-site cross in DCA� provide probably the
best compromise between size of the cluster and computa-
tional cost, and they can be useful suggestions for future full
solutions of the actual two-dimensional systems such as the
Hubbard and the t-J models.
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